Gravitational Co-evolution and Opposition-based Optimization Algorithm
نویسندگان
چکیده
منابع مشابه
Gravitational Co-evolution and Opposition-based Optimization Algorithm
In this paper, a Gravitational Co-evolution and Opposition-based Optimization (GCOO) algorithm is proposed for solving unconstrained optimization problems. Firstly, under the framework of gravitation based co-evolution, individuals of the population are divided into two subpopulations according to their fitness values (objective function values), i.e., the elitist subpopulation and the common s...
متن کاملElite Opposition-based Artificial Bee Colony Algorithm for Global Optimization
Numerous problems in engineering and science can be converted into optimization problems. Artificial bee colony (ABC) algorithm is a newly developed stochastic optimization algorithm and has been widely used in many areas. However, due to the stochastic characteristics of its solution search equation, the traditional ABC algorithm often suffers from poor exploitation. Aiming at this weakness o...
متن کاملAn Optimization Algorithm Based on Binary Difference and Gravitational Evolution
Universal gravitation is a natural phenomenon. Inspired by Newton's universal gravitation model and based on binary differences strategy, we propose an algorithm for global optimization problems, which is called the binary difference gravitational evolution (BDGE) algorithm. BDGE is a population-based algorithm, and the population is composed of particles. Each particle is treated as a virtual ...
متن کاملService Composition Optimization Using Differential Evolution and Opposition-based Learning
The numbers of web services are increasing rapidly over the last decades. One of the most interesting challenges in using web services is the usage of service composition that allows users to select and invoke composite services. In addition, the characteristic of each service is distinguished based on the quality of service (QoS). QoS is utilized in optimizing decisive factors such as cost or ...
متن کاملSTATIC AND DYNAMIC OPPOSITION-BASED LEARNING FOR COLLIDING BODIES OPTIMIZATION
Opposition-based learning was first introduced as a solution for machine learning; however, it is being extended to other artificial intelligence and soft computing fields including meta-heuristic optimization. It not only utilizes an estimate of a solution but also enters its counter-part information into the search process. The present work applies such an approach to Colliding Bodies Optimiz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computational Intelligence Systems
سال: 2013
ISSN: 1875-6891,1875-6883
DOI: 10.1080/18756891.2013.805590